当前位置:首页 > 动态规划 > 二维DP > 正文
HDU1176免费馅饼
71+

题目大意:天上掉馅饼,掉到位置0到10,共t秒,你0时刻在位置5,每秒只能往左或者网友移动1步,已知各时间点馅饼掉落的位置,请问最多可以获得多少馅饼?

Problem Description

都说天上不会掉馅饼,但有一天gameboy正走在回家的小径上,忽然天上掉下大把大把的馅饼。说来gameboy的人品实在是太好了,这馅饼别处都不掉,就掉落在他身旁的10米范围内。馅饼如果掉在了地上当然就不能吃了,所以gameboy马上卸下身上的背包去接。但由于小径两侧都不能站人,所以他只能在小径上接。由于gameboy平时老呆在房间里玩游戏,虽然在游戏中是个身手敏捷的高手,但在现实中运动神经特别迟钝,每秒种只有在移动不超过一米的范围内接住坠落的馅饼。现在给这条小径如图标上坐标:

为了使问题简化,假设在接下来的一段时间里,馅饼都掉落在0-10这11个位置。开始时gameboy站在5这个位置,因此在第一秒,他只能接到4,5,6这三个位置中其中一个位置上的馅饼。问gameboy最多可能接到多少个馅饼?(假设他的背包可以容纳无穷多个馅饼)

Input

输入数据有多组。每组数据的第一行为以正整数n(0<n<100000),表示有n个馅饼掉在这条小径上。在结下来的n行中,每行有两个整数x,T(0<T<100000),表示在第T秒有一个馅饼掉在x点上。同一秒钟在同一点上可能掉下多个馅饼。n=0时输入结束。

Output

每一组输入数据对应一行输出。输出一个整数m,表示gameboy最多可能接到m个馅饼。
提示:本题的输入数据量比较大,建议用scanf读入,用cin可能会超时。

Sample Input

6
5 1
4 1
6 1
7 2
7 2
8 3
0

Sample Output

4

解题思路

棋盘DP、二维DP。定义状态f[i][j]表示时刻i位置j的最多馅饼数量,那么f[i][j] = max(f[i-1][j-1], f[i-1][j], f[i-1][j+1]) + c[i][j],即上一时间在附近3个位置走过来获得i时刻位置j的馅饼的最大值。

程序实现

记忆化剪枝爆搜可得部分分:因为时间*位置太大了,极容易超时。

记忆化搜索,搜过不再搜满分。

顺着DP,由当前时间i、位置j,推出后一时刻i+1,在位置j-1、j、j+1的馅饼数量。

当前时刻是i,位置是j,由前面推过来,前一时刻是i-1,位置是j-1、j和j+1,因为是同一时间计算,c[i][j]可以最后一起加。

更多
HDU1176免费馅饼:等您坐沙发呢!

发表评论

😉😐😡😈🙂😯🙁🙄😛😳😮mrgreen.png😆💡😀👿😥😎😕

快捷键:Ctrl+Enter